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Abstract

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this
study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and
mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was
closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This
suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC
library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing
genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a
fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval.
Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass
species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6,
Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences
were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a
framework for the physical mapping and map-based cloning of MlIW172.
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Introduction

Wheat accounts for approximately 30% of the global cereal

consumption (FAO: World Agriculture: towards 2015/2030), and

is of fundamental importance for food security. Ensuring the yield

increase of wheat to meet future needs has become an important

focus in agricultural research. Powdery mildew, caused by Blumeria

graminis f. sp. tritici (Bgt), is one of the most devastating diseases of

common wheat (Triticum aestivum, AABBDD; 2n= 6x= 42) in

China and worldwide. Significant reductions of yield, flour quality,

and other related grain qualities were reported when severe

epidemics occurred in cool humid climates [1]. Development of

resistant cultivars containing single or stacked resistance genes is a

major focus of wheat breeding program because growth of such

cultivars has proved to be the most effective agronomic approach

to control disease losses. Currently, more than 60 powdery mildew

resistance genes/alleles have been identified at 43 loci (Pm1 –

Pm50, Pm18=Pm1c, Pm22=Pm1e, Pm23=Pm4c, Pm31=Pm21) in

wheat and its wild relatives [2–4].

However, since major resistance genes tend to become

ineffective within a short period due to rapid evolution of mildew

populations, it is necessary to search continually for new sources of

resistance in wheat breeding. Wild emmer, T. turgidum var.

dicoccoides [T. dicoccoides, (AABB; 2n= 4x= 28)], as the progenitor of

the cultivated tetraploid and hexaploid wheat, is crossable with

both durum and common wheat and has great potential for wheat

improvement [5]. Wild emmer is a valuable source of powdery

mildew resistance [6–9] and has been extensively studied for

identification of new alleles and genes useful for wheat improve-

ment. Among the characterized wheat powdery mildew genes,
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Pm16, Pm26, Pm30, Pm36, Pm41, Pm42, MlIW72,MlZec1, PmG3M,

MlIW170, PmG16, PmAS846 and HSM1 have been identified in

wild emmer and introduced into cultivated wheat [3,10].

Molecular marker technology has greatly accelerated gene/trait

tagging, thereby improving development of elite variety through

marker-assisted selection in breeding programs. Valuable genetic

and genomic resources useful for molecular marker development

in wheat are publicly available, and a total of 1,286,372 wheat

expressed sequence tags (ESTs) have been deposited in the NCBI

database (http://www.ncbi.nlm.nih.gov/). More than 16,000

ESTs have been mapped in the wheat deletion bins collection

[11]. These resources provide opportunities for development of

functional molecular markers [eg. sequence tagged sites (STS) and

single nucleotide polymorphisms (SNP)], and performing compar-

ative genomics analyses. Simple sequence repeat (SSR) and STS

markers developed from ESTs are often associated with the coding

regions of the genome and can be converted into easy and reliable

PCR-based markers useful for trait mapping and marker assisted

selection [12–14].

Although the complete genome sequence of wheat is not

expected to be available in the near future due to the complexity

and huge genome size, a large amount of wheat sequences have

been generated to provide genome-wide sequence information for

marker development [15–18]. In addition, the gene order in grass

species was generally conserved [19–22] and the synteny facilitates

comparative genomics analyses in grass families [23]. The

availability of genome sequence information from rice [24],

Brachypodium [25], and Sorghum [20] allows for improved

comparisons and predictions of gene conservation in other

genomes like wheat. The assumption is that if the gene order

within a defined region is conserved across these three species

(orthologous), the corresponding genomic region in wheat might

have maintained similar gene conservation during evolution

[15,26–28]. These predictions enabled colinearity or synteny

analyses, which served as a primary source of genome information

for wheat marker development and mapping [29–31,21].

In this paper, we report the identification of a powdery mildew

resistance gene MlIW172 derived from wild emmer and mapping

the gene to chromosome arm 7AL. We have also developed a

high-resolution genetic linkage map with alignment to a draft

physical map covering the MlIW172 region by using a combina-

tional approach of comparative and genetic analysis, and BAC

screening and sequencing.

Materials and Methods

Plant materials
Wild emmer accession IW172 (original accession No. G-797-M,

originally provided by Dr. Z. Gerechter-Amitai of the Agricultural

Research Organization, the Volcani Center, Israel), was highly

resistant to Bgt isolate E09, a prevailing pathotype in Beijing,

China, with infection type (IT) 0, in both the seedling and adult

plant stages [32]. Durum wheat line Mo75 was highly susceptible

to E09 with IT 3–4. The F1 hybrid between Mo75 and IW172 (11

F1 hybrids for initial genetic mapping and 127 F1 hybrids for fine

mapping) was self-pollinated to generate an F2 segregating

population and corresponding F2:3 families.

Three nulli-tetrasomics (N7AT7B, N7BT7A, and N7DT7A),

two ditelosomics (DT7AS and DT7AL) and six 7AL deletion lines

of hexaploid wheat Chinese Spring, (kindly provided by Drs. WJ

Raupp and BS Gill, Wheat Genetics Resource Centre, Kansas

State University, USA), were used for chromosome-arm assign-

ment and bin mapping of molecular markers linked to the

powdery mildew resistance locus since some markers were mapped

on more than one chromosome before (GrainGenes, http://

wheat.pw.usda.gov/GG2/index.shtml).

Powdery mildew assessments
The prevailing Bgt isolate E09 used for powdery mildew

evaluation was obtained from Dr. Xiayu Duan, Institute of Plant

Protection, Chinese Academy of Agricultural Sciences, Beijing,

China. Isolate E09 is virulent on Pm1a, Pm3a, Pm3c, Pm5a, Pm6,

Pm7, Pm8, Pm17 and Pm19 [7], but avirulent on IW172. The E09

isolate was used to test the resistance of Mo75, IW172, F1, F2
plants and F2:3 progenies at the seedling stage under controlled

greenhouse conditions. The F2-derived F3 families (20 seedlings of

each F3 family) were tested to confirm the phenotypes and

establish the resistance genotype of each F2 plant. Seedlings were

inoculated with E09 when the first leaf was fully expanded.

Inoculations were performed by brushing conidia from sporulating

highly susceptible seedlings of common wheat cv. Xuezao.

Infection types were scored 15 days after inoculation when the

susceptible Xuezao control became heavily infected. Disease

symptoms were recorded on scales of 0, 0;, and 1, 2, 3, 4, with

0 for no visible symptoms, 0; for necrotic flecks, and 1, 2, 3, 4 for

highly resistant, resistant, susceptible and highly susceptible

reactions, respectively. F2 genotypes were predicted based on the

responses of the F3 families and classified as homozygous resistant,

segregating and homozygous susceptible.

Genomic DNA extraction and Bulked Segregant Analysis
Genomic DNA was extracted by the cetyltrimethylammonium

bromide (CTAB) method [33] from uninfected seedlings of

parental IW172 wild emmer, durum wheat Mo75 and F2 plants

of the Mo75/IW172 cross. Equal amounts of DNA from 10

homozygous resistant and 10 homozygous susceptible individuals

of each F3 progeny were randomly selected to establish resistant

and susceptible DNA pools for bulked segregant analysis (BSA)

[34]. Each bulk was at a final concentration of 50 ng?ml21. The

DNA concentration for BSA was measured using Quant-iT

PicoGreen dsDNA Assay Kit (Invitrogen).

Molecular marker analysis
Initially, 175 SSR primer pairs (Xgwm, Xwmc, Xbarc, and Xcfa

series in GrainGenes 2.0 website http://wheat.pw.usda.gov/

GG2/index.shtml), mapped to A and B genomes of wheat were

chosen to screen the parents, resistant and susceptible DNA bulks.

The resulting polymorphic markers were used to genotype the F2
population. After that, the Chinese Spring nulli-tetrasomics and

deletion stocks of homoeologous group 7 were used to determine

the chromosomal and bin locations of these polymorphic makers.

In addition, STS markers closely linked to the Mlm2033 and

Mlm80 powdery mildew resistance genes on chromosome arm

7AL were used for analysis [35]. Polymerase chain reaction (PCR)

was conducted in 10 ml reactions containing 10 mM Tris-HCl,

pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.2 mM dNTPs, 25 ng of

each primer, 50 ng of genomic DNA, and 0.75 U of Taq DNA

polymerase, and DNA amplifications were conducted at 94uC for

5 min, followed by 40 cycles at 94uC for 45 s, 50–60uC (depending

on specific primers) for 45 s, and 72uC for 90 s, and the reactions

were terminated after a final extension at 72uC for 10 min. The

PCR products were mixed with 2 ml of loading buffer (98%

formamide, 10 mM EDTA, 0.25% bromophenol blue, and 0.25%

xylene cyanol), separated on 8% non-denaturing polyacrylamide

gels (39 acrylamide: 1 bisacrylamide), and visualized following

silver staining.

Fine Physical and Genetic Mapping MlIW172
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Comparative genomics analysis and EST-STS marker
development
To saturate the region containing the MlIW172 resistance gene

with molecular markers, sequences of RFLP probes PSR121,

PSR148, PSR680, MWG2062, and CDO347 [36,37] and 7AL

bin mapped ESTs BE637476, BE405531 (MAG1757) and

CD452874 (MAG1759) [35,38] were used in Blastn searches

against the genome sequences of rice, sorghum and Brachypodium.

The corresponding syntenic genomic regions of rice, sorghum, and

Brachypodium were identified for homology comparisons (Table 1).

The complete set of rice genes [39] was downloaded from the

‘‘Rice Annotation Project’’ website at http://rice.plantbiology.

msu.edu/index.shtml; Brachypodium and sorghum genes were

obtained from ‘‘Phytozome’’ at http://www.phytozome.net/

[40]. To identify additional wheat EST-STS markers that are

potentially linked to the resistance gene, the sequences of putative

Brachypodium genes at the syntenic genomic region were used as

queries to search for homologous wheat ESTs and these wheat

ESTs were used to design PCR primers (Table 2) using primer

premier 5.0 (http://www.premierbiosoft.com/primerdesign/).

PCR products were separated on 8% non-denaturing PAGE gels

[41] for polymorphism detections and polymorphic markers were

tested on DNAs of F2 mapping population.

Data analysis
Deviations of observed data from theoretically expected

segregation ratios were tested using Chi-squared (x2) tests for

goodness-of-fit. MapMaker 3.0 [42] was used to determine linkage

of polymorphic markers and the resistance gene. A LOD score of

3.0 was used as the threshold for declaration of linkage. The

genetic maps were constructed with the software Mapdraw V2.1

[43].

Identification, sequencing and analysis of BAC clones
The T. turgidum durum cv. Langdon BAC library (including

516,096 BAC clones stored in 1,344 384-well plates) [44] was

arrayed in 280 DNA pools and used for PCR screening with the

co-segregated marker XRGA-C6 based on the initial mapping

result. Two positive BAC clones were identified. The Chinese

Spring 7AL-specific BAC library (TaaCs7ALhA, 15.36coverage,

Keeble-Gagnere, manuscript in preparation) consists of 5,223

minimum tilling path (MTP) BAC clones was screened by PCR

using the most closely linked marker WGGC4663. A BAC contig

with 12 BACs was identified and selected for sequencing.

The two Langdon BACs’ DNA was pooled together and the 12

Chinese Spring BACs’ DNA was divided into 3 pools. The 4 pools

were barcoded separately for 454 sequencing. Five micrograms of

pooled BACs DNA was used to prepare the 454 sequencing library

using the GS Titanium rapid library and 3kb span paired-end

library preparation kit following the manufacturer’s instructions

(Roche Diagnostics). The 454 sequencing rapid libraries were

processed using the GS FLX plus Titanium LV emPCR (Lib-L)

and GS FLX plus Titanium sequencing (GS FLX+) kits (Roche

Diagnostics) according to the manufacturer’s instructions. The

paired-end libraries were processed using GS FLX plus Titanium

LV emPCR (Lib-L) and GS Titanium Sequencing Kit XLR70

(Roche Diagnostics). The cross-match program (University of

Washington, Seattle, WA, USA) and Roche 454 Newbler were

applied to remove the vector and barcode sequences and perform

sequence assembly.

All analyses were performed on Linux systems. Gene prediction

was performed using the combination of MAKER from GMOD

(http://www.gmod.org/wiki/MAKER) and TriAnnot pipeline

from URGI database (http://wheat-urgi.versailles.inra.fr/Tools).

The NBS-LRR domain of resistance gene analogs (RGAs) was

identified using Pfam (http://pfam.sanger.ac.uk/) and stand-alone

BLAST obtained from the National Center for Biotechnology

Information (NCBI: www.ncbi.nlm.nih.gov/). We used coding

sequence data sets from the sorghum genome version 1 [20], rice

(Oryza sativa) genome 6 (rice.plantbiology.msu.edu), and Brachypo-

dium genome version 1 [25].

Results

Genetic analysis of the powdery mildew resistance gene
in IW172
The IW172 wild emmer accession was highly resistant to the

E09 Bgt isolate (IT value 0), whereas durum wheat line Mo75 was

highly susceptible (IT value 4). The F1 plants from the Mo756

IW172 cross were highly resistant (IT value 0-0;), indicating

complete dominance of resistance. In our initial genetic mapping

using 115 F2:3 families, the observed ratio of 26 homozygous

resistant: 55 segregating: 34 homozygous susceptible fitted the

expected 1:2:1 ratio for monogenic resistance (x2=1.33, lower

than x
2
0.05,2=5.99, 0.75.P.0.5; Table 3). In our fine mapping

using a larger population of 4192 F2:3 families, the phenotypic

Table 1. Mapped wheat EST markers and ortholgous gene pairs among Brachypodium, rice and sorghum

Wheat maker Wheat EST Rice Brachypodium Sorghum Pfam Description

XRGA-C6 and XRGA-B6 TC432233 Os02g16060 Bradi1g29670 Sb04g009750 NBS-LRR disease resistance protein

NA TC421430 Os06g51260 Bradi1g29680 Sb10g030960 MYB family transcription factor

NA CA694329 Os06g51250 Bradi1g29690 Sb10g030940 EF hand family protein

NA TC443015 Os06g51240 Bradi1g29710 Sb10g030930 Expressed protein

WGGC4655 CK153650 Os06g51220 Bradi1g29730 Sb10g030910 HMG1/2

WGGC4654 TC386221 Os09g15480 Bradi1g29750 Sb10g030900 Ser/Thr-rich protein T10 in DGCR
region

WGGC4653 TC390087 Os06g51210 Bradi1g29760 Sb10g030890 Zinc finger family protein, putative

Xmag1759 CD452874 Os06g51170 Bradi1g29780 Sb10g030880 Serine/threonine-protein kinase Cx32

Xmag1757 BE405531 Os06g51160 Bradi1g29780 Sb10g030870 Glycosyl transferase family 8

BE637476 BE637476 Os06g51150 Bradi1g29800 Sb10g030840 Catalase isozyme B

doi:10.1371/journal.pone.0100160.t001
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segregation ratio was: 1046 homozygous resistant, 2159 segregat-

ing and 987 homozygous susceptible, and also corresponded to the

expected 1:2:1 ratio for monogenic resistance (x2=5.45, lower

than x
2
0.05,2=5.99, 0.1.P.0.05; Table 3). Hence, the powdery

mildew resistance gene in IW172 was provisionally designated

MlIW172.

SSR and EST mapping of MlIW172
Bulked segregant analysis was employed to screen wheat Xgwm

SSR primer pairs [45]. One marker, Xgwm344 was polymorphic

between the resistant and susceptible pools and confirmed to be

linked to MlIW172 in the F2 population. Since Xgwm344 is closely

linked to Pm1e on the distal part of 7AL [46], additional SSR

markers on 7AL arm were screened for polymorphisms between

the pools. Three SSR markers, Xwmc525, Xcfa2040 and Xcfa2240,

were found to be linked to the MlIW172.

A set of Chinese Spring homoeologous group 7 nullisomic-

tetrasomic, ditelosomic and deletion lines were employed for

chromosomal bin assignment of MlIW172- linked SSR markers

Xgwm344, Xwmc525, Xcfa2240 and Xcfa2040. All four SSR

markers were physically mapped to the distal bin 7AL-16 (0.86–

0.90) (Fig. 1A), demonstrating that MlIW172 maps to the distal

part of 7AL.

EST-STS primer pairs that mapped physically to the distal

7AL-16 (0.86–0.90) bin [47] (http://wheat.pw.usda.gov/SNP/

primers/contig_primer_list.xls) were selected to screen for poly-

morphisms between the IW172 and Mo75 parental lines, and the

resistant and susceptible DNA pools. Out of 22 primer pairs tested,

only one EST marker BE637476 was polymorphic and linked with

MlIW172. Five STS markers linked to the Mlm2033 and Mlm80

powdery mildew resistance genes located on chromosome 7AL

[35] were also tested for polymorphism in the MlIW172 mapping

population. MAG1757 and MAG2185 were polymorphic between

IW172 and Mo75, as well as the resistant and susceptible DNA

pools and also linked to the MlIW172 locus. Based on its linkage

map position, MlIW172 could be assigned to the corresponding

chromosome region of the Mlm2033, Mlm80 and Pm1 loci on 7AL

(Fig. 1B).

Comparative mapping of the MlIW172 region
In order to saturate theMlIW172 genetic map, sequences of five

RFLP probes, PSR121, PSR148, PSR680 (MAG2185), CDO347

and C607 [37] closely linked with Pm1a, and three ESTs,

BE637476, BE405531 (MAG1757), and CD452874 (MAG1759)

flanking MlIW172 on the distal bin of 7AL were used as queries to

search the rice, sorghum and Brachypodium genome sequences to

identify syntenic genomic regions corresponding to the MlIW172

locus in wheat using an expected value of 1E-10 and identi-

ty§80% as cutoff points [48]. Both PSR148 and BE637476

detected putative orthologs on Brachypodium chromosome 1

(Bradi1g29800), rice chromosome 6 (Os06g51150) and sorghum

chromosome 10 (Sb10g030840). A putative ortholog of BE405531

(MAG1757) was also found in Brachypodium (Bradi1g29790), but not

in rice or sorghum. CD452874 (MAG1759) was homologous to the

Brachypodium gene Bradi1g29780, which corresponded to two genes

in rice (Os06g51160 and Os06g51170) and sorghum (Sb10g030870

and Sb10g030880), indicating gene duplications in rice and

sorghum. PSR680 (MAG2185) was homologous to a RGA cluster

(Bradi1g29630, Bradi1g29640, Bradi1g29660, and Bradi1g29670) in

Brachypodium (Fig. 1D). However, no RGA was detected in the

corresponding genomic regions of rice and sorghum (Fig. 1E, 1F).

Nevertheless, our analysis revealed a syntenic relationship between

the MlIW172 genomic region in wheat chromosomal bin C-

7AL16-0.86-0.90 (from BE637476 to MAG2185) and Brachypodium

chromosome 1 (a 150-kb region from Bradi1g29610 to Bra-

di1g29800), rice chromosome 6 (an 85.8-kb region from

Os06g51260 to Os06g51150) and sorghum chromosome 10 (a

138.9-kb region from Sb10g030990 to Sb10g030840) (Table 2,

Fig. 1D, 1E, 1F).

Table 2. EST-STS, EST-SSR and SSR markers linked to powdery mildew resistance gene MlIW172

Makers Maker type Forward primer (59-39) Reverse primer (59-39)

XRGA-B6 EST-STS TTGCTCTGCTCTTCTTCCTT TATGGTGGTTGGTGGTATGT

XRGA-C6 EST-STS ATTGGGACGGGGATGAAGAT GGGCAGACAGGGAAAAAGTG

WGGC4653 EST-STS ATCCATCACTTCACGCTC GTTCCTAACCCAACAATGT

WGGC4654 EST-STS AGACTAATGACTGACACGACG CTGAAAGAACTGCTGTGC

WGGC4655 EST-STS CATCCGCCTTCTTCGTCT TTTCCGATTCGCTCAAGC

WGGC4656 EST-STS GAGAGTGTTGGTTGTAGG GCGAAGCATTTCCAGTAG

WGGC4657 EST-STS TAATGTTGCTCACTTCCG CCTCTTCCATAATGCGAT

WGGC4658 SSR ACAGCGGCTTGTTTCTTG CACTTGTCAGCATTTCATCC

WGGC4659 SSR CATATCATGGTTGTCCTCCTA TCTCAACTGAATTCGAAACAT

WGGC4660 SSR TTAGCGTCATGTGATTAGGAT CTAGAGGTCCCCAACATTATT

WGGC4661 SSR CGACAATCATTTGTGTATGTG TGTAGACACATTGTTGAAAGAAA

WGGC4662 SSR CCAAGAGAAACGGATACAAAT TTTACCTTGCAGATTTCTGTT

WGGC4663 EST-SSR GAAAAAGAAAAACCAGGAGAA GGGAACCAGTACACTAAACAC

WGGC4664 SSR ATTGAAAAACGTGAAACCAG CTCTGTTTGATCTGAGCGTAG

WGGC4665 SSR GGAGCCAGTACACTAAACACA AGGAGAAAACCGAGTAAAAAT

WGGC4666 SSR CTCCGAAAATATTCAAATCAG TTGGCATATGAACCAATACAT

WGGC4667 SSR GAGGGAACCGTACAAATACA ACTCACAGAGCTCACCAGAT

WGGC4668 SSR GTTTGATCTGAGCGTAGGAC AACGTGAAACCAGGTACAAC

doi:10.1371/journal.pone.0100160.t002
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To accurately characterize collinearity between the MlIW172

region and the corresponding genomic regions of Brachypodium, rice

and sorghum, the sequences of putative Brachypodium genes from

Bradi1g29630 to Bradi1g29800 were used as queries to search for

orthologous wheat ESTs (http://wheat.pw.usda.gov/GG2/blast.

shtml). A total of 58 wheat ESTs were identified and used to

design primers with the Conserved Primers 2.0 [49]. Out of 76

primer pairs screened, 5 EST-STS makers, XRGA-C6, XRGA-B6,

WGGC4653, WGGC4654, and WGGC4655 (Table 2) were found

to be polymorphic between the parental lines IW172 and Mo75,

as well as the resistant and susceptible bulks, and were

subsequently used to construct a MlIW172 high-density linkage

map after genotyping the recombinants identified by BE637476

and Xgwm344 in the mapping population. XRGA-C6 and XRGA-

B6 were derived from wheat ESTs orthologous to Bradi1g29670.

The WGGC4653, WGGC4654, and WGGC4655 markers were

derived from three wheat ESTs that were orthologous to

Bradi1g29760, Bradi1g29750, and Bradi1g29730 in Brachypodium

(Table 1). The orders of these markers were highly conserved

between wheat, Brachypodium, rice, and sorghum (Fig. 1E).

Marker enrichment using BAC libraries from cv. Langdon,
Chinese Spring 7AL arm and T. urartu scaffolds
BAC libraries screening was employed to develop a physical

map covering the MlIW172 region and generate BAC sequences

for marker development. However, BAC library from the IW172

wild emmer accession with the resistant trait is not yet available.

We therefore screened BAC library of tetrapolid wheat cv.

Langdon with the XRGA-C6 marker and detected two BACs

133N2 and 865A17 (Fig. 2), which are 115 and 151 kb,

respectively. Alignments of 454 sequences of these two BACs

indicated they shared a 30 kb overlapping region and hence form

a sequence contig spanning about 236.3 kb (GenBank accession

No. KJ782374; Fig. 2). We developed two intron-flanking EST-

PCR markers [50] WGGC4656 and WGGC4657 and one SSR

marker WGGC4658 from the contig to construct a higher

resolution map (Table 2, Fig. 2, Fig. 3), and found that

WGGC4657 was co-segregated with WGGC4658.

To provide additional markers for higher resolution map,

sequences of Bradi1g29680, Bradi1g29690, Bradi1g29700, Bra-

di1g29710, and Bradi1g29720 were used as queries to blast the T.

urartu genome scaffolds [17]. Bradi1g29680, Bradi1g29690, and

Brad1g29720 identified scaffold25403 (333kb), scaffold96474

(61kb), and scaffold5474 (44kb), respectively. Five SSR polymor-

phic markers WGGC4659, WGGC4660, WGGC4661, WGGC4662,

and WGGC4663 were developed from these scaffolds (Table 2,

Fig. 2, Fig. 3). None of the scaffolds in the T. urartu genome

matched Bradi1g29700 and Bradi1g29710.

In addition, WGGC4663 was used to screen the Chinese Spring

7AL-specific BAC library. The BAC Contig841 containing 12

BACs was identified and chosen for sequencing (Fig. 2; Keeble-

Gagnere, manuscript in preparation). The 454 reads of 3 barcoded

BAC pools were assembled into a contig spanning about 359.7 kb

(GenBank accession No. KJ782373). Five additional polymorphic

SSR markers WGGC4664, WGGC4665, WGGC4666, WGGC4667,

and WGGC4668 were developed from sequence contig841 and

added to the high-resolution genetic map (Table 2, Fig. 2, Fig. 3).

WGGC4664, WGGC4665, and WGGC4668 were co-segregated,

and 0.04 cM closer to MlIW172 than WGGC4663. Moreover,

WGGC4667 and WGGC4666 were 0.04 cM and 0.08 cM apart

from MlIW172 than WGGC4663, respectively (Fig. 2, Fig. 3).

Therefore, the MlIW172 was delineated to a 0.48 cM interval by

WGGC4664 (WGGC4665, WGGC4668) and WGGC4659 (Fig. 2).
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Discussion

Comparison of MlIW172 with other Pm genes on 7AL
Our molecular marker analyses have revealed a dominant

powdery mildew resistance locus, MlIW172, located on chromo-

some 7AL of T. dicoccoides. A number of powdery mildew resistance

loci have been mapped to the same or nearby region. Pm1 was the

first reported powdery mildew resistance gene from common

wheat cultivar Axminster and localized to 7AL arm [51], and

subsequently, five Pm1 alleles (Pm1a-Pm1e) have been described for

the locus [3,36,46]. Genetic mapping analyses have shown that

Pm1 co-segregates with the Xcdo347 and PSR680 RFLP markers

[37], and is 0.3 cM proximal to the Xgwm344 SSR marker [46].

MlIW172 co-segregates with the PSR680 derived STS marker

MAG2185 in the preliminary genetic linkage map (Fig. 1B) and

maps to a region flanked by Xwmc525 and Xgmw344. Different

powdery mildew reactions were observed between the MlIW172

and Pm1a and Pm1c alleles after inoculation with 15 Chinese Bgt

isolates (Table S1). Since none of the identified Pm1 alleles was

originated from wild emmer [3], the MlIW172 is most likely a new

allele of the Pm1 locus.

Xwmc525 and Xgwm344 are markers linked to several powdery

mildew resistance genes located on chromosome arm 7AL. Based

on their chromosome positions and genetic distances to the

markers Xwmc525 and Xgwm344, the powdery mildew resistance

genes presently reported on 7AL can be classified into three groups

(Fig. 4). The first group is proximal to Xwmc525, and includes

NCA4 and NCAG11 [52], NCA6 [53], PmTb7A.1 [54] and Pm37

[55]. The second group is located in the Xwmc525 - Xgwm344

genetic interval. Members of this group include the Pm1 [36,37],

Mlm2033 and Mlm80 from T. monococcum [35], PmTb7A.2 from T.

boeoticum [54], PmU from T. urartu [56], MlAG12 from T. timopheevii

[57], as well as MlIW72 [58], HSM1 [10], and MlIW172 (current

study) from wild emmer. The MlIW72 was identified from wild

emmer IW72 collected in Kokhav Hashahar, Israel [58]. The

IW172 (G-797-M) was a different collection from Israel. Although

IW172 and IW72 were collected independently by different

collectors, the possibility that the resistance genes MlIW172 and

MlIW72 are identical cannot be excluded. The last group contains

Figure 1. Genetic and comparative genomics linkage map of powdery mildew resistance geneMlIW172 derived from wild emmer. A:
MlIW172 physical bin map. MlIW172 was mapped to the distal bin 7AL16-0.86-0.90. B: Preliminary MlIW172 genetic map on wheat chromosome arm
7AL with genetic distances in cM shown on the left, markers shown on the right. C: MlIW172 high-resolution genetic map on wheat 7AL arm with
genetic distances in cM shown on the left, EST-STS, EST-SSR and SSR markers shown on the right. Molecular markers that were previously assigned to
the 7A wheat deletion bin map (A) are connected to the physical map with solid lines. TheMlIW172 locus is in red and underlined. The markers which
served as anchors, establishing colinearity between the MlIW172 genetic map and the sequences of Brachypodium, rice and sorghum, are connected
to the Brachypodium gene with solid lines. D: The MlIW172 orthologous genomic region on Brachypodium chromosome 1 (150kb) with orthologous
genes shown on the right. The four genes in green represent the RGA cluster. E: The MlIW172 orthologous genomic region on rice chromosome 6
(85.8kb) with orthologous genes shown on the right. F: The MlIW172 orthologous genomic region on sorghum chromosome 10 (138.9kb) with
orthologous genes shown on the right.
doi:10.1371/journal.pone.0100160.g001
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PmG16 [6], and two recessive resistance genes Pm9 [59] and

mlRD30 [60], which are located on the distal side of the Xgwm344

marker on 7AL. Clearly, the distal 7AL bin appears to be rich in

powdery mildew resistance genes. However, considering the

influences of different mapping populations on the marker

distance in this region, it is unclear whether the genes within

one group represent a series of different loci, or are alleles at a

single locus. Phytopathology test and allelism analyses in future

should be able to clarify the relationships of these genes. The map-

based cloning of one or more of the genes could delineate the

diversity and variation of the powdery mildew resistance genes/

alleles in this genomic region.

Genetic and physical distance relationships in the
MlIW172 region
The majority of plant resistance genes (R genes) are members of

large gene families. Understanding the evolution of R genes and

the mechanisms underlying the evolution of novel R genes has

become an important research field. Sequence rearrangement of R

genes in multigene families through recombination can lead to the

generation of novel R gene specificities. However, recombination

in R gene regions can be complicated. Although most R genes are

localized in high recombination regions [30], resistance loci with

recombination suppression have been reported [37]. Suppressed

recombination can cause co-segregation (complete genetic linkage)

of multiple markers that may not be physically closely linked. The

genetic and physical mapping in the 7AL distal region allowed us

to examine the ratio of physical to genetic distance in the

MlIW172 region based on the analyses of the overlapping BAC

sequences of A genomes from Chinese Spring, Langdon and T.

urartu scaffolds (Fig. 4). Although our BAC contigs and sequence

scaffolds were from different A genomes and did not completely

cover the MlIW172 region, we obtained a total of ,929 kb of

sequences that were anchored to the genetic map (Fig. 2). These

sequences have greatly facilitated the development of molecular

markers to increase the marker density in theMlIW172 region and

have allowed us to examine recombination within this region.

With a genetic distance of 0.12 cM between the WGGC4666 and

WGGC4668 markers (Fig. 1, Fig. 2), the ratio of physical to genetic

distance on the proximal side ofMlIW172 was about 1.07Mb/cM;

whereas in the distal region between WGGC4662 and WGGC4659,

a ratio of 855.9kb/cM was calculated. However, a higher ratio of

recombination (182.7kb/cM) was detected from WGGC4656 to

XRGA-C6. Overall, an average of 529.8kb/cM was found in the

MlIW172 genomic region. Hossain et al. [47] showed that the

highest density of EST (or gene) loci was observed in bin 7AL16-

0.86-0.90, where approximate 1 EST (or gene) mapped for every

362 kb. The distal region of 7AL (bin 0.94–0.99, 4% of the 7AL

arm) is a gene-rich region with high recombination spanning

21 Mb with approximately 442 kb/cM [61]. Therefore, recom-

bination in the MlIW172 genomic region is comparable to the

EST mapping data on 7AL. We did not note a severe suppression

of recombination at the Lr20-Sr15-Pm1 resistance locus on

chromosome arm 7AL in hexaploid wheat [37].

High collinearity of wheat and Brachypodium in the
MlIW172 genomic region
Comparative genomics analyses can be used to exploit the

syntenic relationships among grass species for development of new

markers linked to genes of interest by analyzing well-assembled

genome sequence information available in model species [7,62].

Nevertheless, many studies have reported poor levels of micro-

colinearity between wheat and rice because of inversions,

deletions, duplications, and other rearrangements [6,7,48,63].

The isolation of the wheat disease resistance genes Lr10, Lr21 and

Pm3 has also shown that wheat and rice have very limited

colinearity in the relevant chromosomal regions. For example, the

rice genome contains genes homologous to Lr10 and Pm3, but at

Figure 2. Physical map of the BAC contigs and scaffolds flanking the MlIW172 locus anchored to the high-resolution genetic map.
The approximate physical locations of all the newly designed markers are given on the BAC contigs or scaffolds.
doi:10.1371/journal.pone.0100160.g002
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non-orthologous positions, indicating massive genomic rearrange-

ments happened after the divergence of rice and wheat [64,65].

Brachypodium is expected to show better synteny with wheat than

rice and sorghum because it diverged more recently from the

lineage leading to wheat [27].

In this study, we identified the MlIW172 orthologous regions

from rice, Brachypodium, and sorghum using marker sequence

information mapped to the wheat MlIW172 region. The 992-kb

sequences of overlapping BACs and T. urartu scaffolds were also

used for comparative genomics analysis. In general, wheat, rice,

sorghum, and Brachypodium have good colinearity. One major

difference within the genomic region is the Brachypodium contains a

cluster of putative NBS-LRR genes, Bradi1g29630, Bradi1g29640,

Bradi1g29660 and Bradi1g29670 that correspond to, or are very

near to, the disease resistance cluster region including the Lr20-

Sr15-Pm1 on 7AL. These resistance-like genes in the RGA cluster

in Brachypodium share homology to RFLP probe PSR680 and

markers XRGA-C6 and XRGA-B6, but are not present in the

corresponding genomic regions in rice and sorghum. This

observation suggests that these resistance-like genes might exist in

the ancestral pooideae specie after its divergence from rice. The

presence of RGA clusters in the Brachypodium and wheat

orthologous region further supports the utility of Brachypodium

genome for comparative mapping of Triticeae species, particularly

in those rapidly evolving disease resistance loci.

MlIW172 is located in an RGA-rich genomic region
Most of the cloned disease resistance genes in wheat, such as

Pm3b [65], Sr33 [66], Lr1 [67,68], Lr10 [69], Lr21 [70] belong to

the nucleotide binding site leucine-rich repeats (NBS-LRR) R gene

family. From the tetraploid wheat cv. Langdon BACs 133N2 and

865A17 sequences, we identified five NBS-LRR type RGAs. In

the T. urartu scaffold25403, we predicted three successive RGAs

from 124,590bp to 151,331bp that could constitute an additional

RGA cluster. The large NBS-LRR gene family is often clustered

within a resistance locus, so it is very difficult to isolate and clone

genes eliciting a desired resistance function in the large polyploidy

wheat genome without fine genetic map and good BAC-based

physical map information.

In this study, we have delimited MlIW172 to a 0.48 cM interval

and linked to WGGC4659 as closely as 0.04 cM. The WGGC

markers identified in this study have allowed BAC pools from the

developing Chinese Spring 7AL genome assembly to be located to

the regions of the MlIW172 locus and this represents a significant

step toward positional cloning of MlIW172. Analysis of the

Chinese Spring 7AL-BAC pool sequences has indicated a total of

three BAC pools (ca 800 kb each) are present in the region

immediately flanking the MlIW172 locus, based on the presence of

the WGGC sequences identified above. However, none of the

identified BAC clones 133N2 and 865A17 (Langdon), the

contig841 (Chinese Spring) and scaffold25403 (T. urartu) surround-

Figure 3. PCR amplification patterns of the markers WGGC4656,
WGGC4657, WGGC4658, WGGC4659, WGGC4660, WGGC4661,
WGGC4662, WGGC4663, WGGC4664, and WGGC4665 in 8% non-
denatured polyacrylamide gels. M: 2kb DNA marker. Lanes 1 and 2
are IW172 and Mo75, respectively, lanes 3–6 represent homozygous
resistant plants, lanes 7–10 represent homozygous susceptible plants,
and lanes 11–14 represent heterozygous resistant plants.
doi:10.1371/journal.pone.0100160.g003

Figure 4. Integrative views of the MlIW172 gene loci with other
previously published Pm genes on chromosome arm 7AL. The
loci can be classified into three groups (Group I; Group II; Group III)
based on their order and genetic distance to markers Xwmc525 and
Xgwm344.
doi:10.1371/journal.pone.0100160.g004
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ing the region of MlIW172 was from A genome of wild emmer.

Recently, we have constructed a wild emmer BAC library with

106coverage (Liu et al unpublished data) which could be used for

chromosome walking to close the gap in the physical map using

the new markers developed from the MlIW172-adjacent ends of

contig841 and scaffold25403. Identification and sequencing of

BAC clones spanning the uncovered region are the critical steps

towards map based cloning of the MlIW172 gene in wild emmer.

Supporting Information

Table S1 Phytopathology test of MlIW172 and some

known powdery mildew resistance genes to 15 Chinese

Bgt isolates.
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