Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí OPVK (CZ.1.07/2.2.00/28.0032)

Ebola therapy protects severely ill monkeys

Nature 514, 41–43

2 October 2014

Published online 29 August 2014

Ivana Družbíková

Ebola virus disease

- Ebola haemorrhagic fever
- fatal illness in humans
- is transmitted to people from wild animals
- spreads in the human population through human-to-human transmission
- first appeared in 1976 in 2 outbreaks, one in Nzara (Sudan) and the other in Yambuku (Democratic Republic of Congo)
- the latter occurred in a village near the Ebola River, from which the disease takes its name

Symptoms of ebola virus disease

- the incubation period is 2 to 21 days
- humans are not infectious until they develop symptoms
- first symptoms fever fatigue, muscle pain, headache and sore throat
- followed by vomiting, diarrhoea, rash, symptoms of impaired kidney and liver function, and in some cases

both internal and external bleeding

Early 2014 year

- a new strain of the Zaire species of ebola virus emerged in the West African country of Guinea
- spread to Liberia, Siera Leone and Nigeria
- the outbreak persists despite the best efforts of local and international authorities
- the largest filovirus outbreak on record
- There are no licensed vaccines or post-exposure treatments against Ebola

- Rhesus monkeys can be completely protected from the lethal Ebola infection using ZMapp
- It is a blend of three monoclonal antibodies.
- This treatment protected monkeys even when it was administered as late as 5 days after exposure to the virus

Accidental experiment

- Studies have found that modulators of blood coagulation an antisense oligonucleotide called AVI – 6002 and a vaccine based on vesicular stomatitis virus (VSV) all afforded partial protection of monkeys against Ebola when administered within an hour of virus exposure
- the VSV-based vaccine was used in 2009 to treat a laboratory worker in Germany shortly she was pricked with a needle possibly contaminated by an Ebola-infected animal
- the worker survived

treatments that can completely protect monkeys against Ebola include

- small "interfering" RNAs
- various combinations of antibodies
- these treatments need to be administered within 2 days of exposure to the virus
- these approaches can be used to treat known exposures and need for treatments that protect at later times after infection

Types of therapy

- Cocktail of monoclonal antibodies that protected 43% of monkeys when given as late as 5 days after Ebola exposure. The clinical signs of disease are apparent.
- Another therapy that combines monoclonal antibodies with interferon alfa provides almost complete protection of macaques when given 3 days after exposure at which point the virus can be detected.
- ZMapp an antibody therapy that does not require interferon alfa and which was developed by 2 collaborating teams of researchers. ZMapp contains two chimaeric monoclonal antibodies and a third is from a different cocktail.

To test the therapy ...

- administered a lethal dose of Ebola virus to 3 groups of six animals and then treated them with 3 doses of ZMapp:
 - 1. group received therapy at 3,6 and 9 days post-infection
 - 2. group at 4, 7 and 10 days
 - 3. group at 5,8 and 11 days

• The result:

all the animals survived undetectable viral loads by 21 days after infection

• The authors used the Kikwit variant of the virus , because the Guinean strain from the current West African outbreak was not available for this experiment.

Treat patients

- development of ZMapp and it success in treating monkeys is a monumental achievement
- treatment has been used in the current Ebola outbreak to treat several patients:

Of these 2 US health care workers have recovered - 45% of patients in this outbreak survive without treatment

Two other patients have not survived – might be the treatment was initiated too late

 lethal disease in humans is caused by 3 different species of ebola virus (Sudan, Bundibugyo, Zaire) and 2 genetically distinct lineages of Marburg virus

- treatments that protect against one species of ebola Zaire, in the case of ZMapp – will probably not protect against a different species of the virus.
- the need for treatments for filovirus infections is the most effective way to manage and control the outbreaks through preventive vaccines
- during outbreaks single injection vaccines are needed to ensure protection
- at least five preventive vaccines have been shown to completely protect monkeys against Ebola and Marburg infection
- only VSV based vaccines have been reported to completely monkeys against Ebola (Zaire) virus after a single injection

- antibody therapies and several other strategies mentioned here should be included in an arsenal of interventions for controlling future Ebola outbreaks
- ZMapp has been administered for compassionate use the next crucial step will be to formally assess it safety and effectivenes
- testing the latter is difficult because intentional infection of human subjects in clinical trials is not possible

Thank you for your attention

Ivana Družbíková MBB 2. ročník

METASTASIS RISK AFTER ANTI-MACROPHAGE THERAPY

Nature - 6 November 2014, VOL 515 - Bonapace, Keklikoglou, De Palma

Martin Dihel

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí OPVK (CZ.1.07/2.2.00/28.0032)

MACROPHAGES

- Immune cells that play key parts is our defence against invading pathogens
- Participate in organ development, remodelling, healing and disease
- Found in tumours, where they seem to support tumour progression -> development of drugs that decrease number of macrophages, block their infiltration into tumours, reduce protumoral functions

MONOCYTES

 Circulating precursors of macrophages-enter a tumour from the bloodstream and differentiate into macrophages

 The recruitment of monocytes and their differtiation into macrophages regulated by signalling molecules released by the tumour
= C-C chemokine ligand 2 (CCL2)

CCL2

 A protein, which attracts monocytes and make a bond with receptor CCR2.

 Blocking CCL2 -CCR2 inhibits macrophages infiltration into the metastases.

 Blocking CCL2 may be an attractive way how to fight with metastasis in patients with breast cancer and other

ANTI-CCL2 THERAPY

 Blockade of CCL2 decreased number of macrophages, reduced macrophage recruitment to the tumour and also reduced growing of metastasis

ANTI-CCL2 THERAPY

- CCL2 neutralization had a direct effect on the primary tumour, possibly through macrophage
- The treatment may also affect the establishment and growth of newly settled metastases, for example by inhibiting macrophage production of vascular endothelial growth factor A (VEGF-A)

AFTER ANTI-CCL2 THERAPY

- Interrupting anti-CCL2 therapy accelerated the development of lung metastases and death
- 10 days after withdrawal of the therapeutic antibody, they observed abnormally increased numbers of circulating cancer cells and monocytes in the blood of the mice

1ST MECHANISM

 Mechanism may involve heightened CCL2 levels in the lungs of the mice after therapy

- Clinical evidence that CCL2 levels increased in patients with cancer who are treated with the human anti-CCL2 antibody carlumab
- Pharmacological targeting of CCL2 may trigger a feedback mechanism, that stimulates CCL2 production

2ND MECHANISM

- May involve the mode of action of the anti-CCL2 antibody
- Systemic neutralization of CCL2 does not impair the production of monocytes in the bone marrow, but rather blocks their mobilization to the circulation -> accumulation in the blood, lungs and tumours
- Macrophages seemed to precipitate metastatic tumour growth mainly through their production of VEGF-A ->blockade of VEGF-A after anti-CCL2 therapy restored normal tumour progression

ANTI-MACROPHAGE THERAPY TODAY

- Anti-macrophage therapies are currently being investigated in patients with cancer, but have not yet received official approval for clinical use
- Carlumab did not show antitumoral activity in initial clinical trials

ANTI-MACROPHAGE THERAPY TOMORROW

 Small-molecule inhibitors that block the activity of the receptor CSF1R

 Anti-CSF1R antibodies function mainly as monocyte- (and macrophage-) depleting agents, unlikely to cause monocyte rebounds to tumours after therapy

- Macrophages can suppress the antitumoral functions of T cells of the immune system, so their transient depletion in tumours may increase the efficacy of immunotherapy
- Promising are pharmacological approaches that can 'reprogram' macrophages from being pro- to antitumoral effector cells
- In combination with the proper treatment against cancer cells and with the right timing, this new treatment should be used in constant fight against cancer

Thank you for your attention

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí OPVK (CZ.1.07/2.2.00/28.0032)

Roadmap for Regulation

Nature Volume 518 19 February 2015 Gabriela Fryčová MBB 2

Epigenomics

- The study of the key functional elements that regulate gene expression in a cell without altering the DNA sequence.
- Two of the most characterized epigenetic modifications are DNA methylation and histone modification.
- Epigenomes provide information about:
 - patterns in which structures such as methyl groups tag DNA
 - interactions between distant sections of chromatin
 - regulatory elements in DNA itself

Epigenomics

- **The ENCODE Project** aims to catalogue the regulatory elements in human cells, studying the epigenomic signatures of cells.
- The Roadmap Epigenomics Project builds on this by analysing samples taken directly from human tissues and cells — embryonic and adult, diseased and healthy.
- Link between these epigenomic data and corresponding genetic information → reference epigenomes for 127 tissue and cell types.
- → The result is a representation of how epigenomic elements regulate gene expression in the human body.

Epigenomics

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Differentiation enhanced

- All the cells in the body contain essentially the same genome, and arise from the progeny of a single fertilized egg.
- → defining the epigenomic signatures of a broad spectrum of human tissues and cells undergoing crucial developmental transitions.
- → delineating how cell-specific programs of gene expression are achieved.
- Only half of the 25,000 protein-coding genes of mammalian genome are expressed in any given cell type.
- → many of these genes are required for **general functions**.
- → others are active in only one or a few cell types, or exhibit different patterns of regulation from cell to cell.

Enhancers

- Regulation of gene expression at **long range**.
- Each cell type is regulated by perhaps 20,000–40,000 enhancers.
- Activation through interactions with transcription factors, which recognize and bind to specific DNA sequences within the enhancer region.
- Enhancers that are active in cell-type-specific epigenomic signatures are typically highly enriched in DNA sequences to which lineage-determining and signal-dependent transcription factors bind.
- → the delineation of a particular cell's active enhancer repertoire → prediction of the transcription factors required for that cell's identity.

Enhancers

- Model of neuronal development in vitro, by generating six lineages of neuronal progenitors from embryonic stem (ES) cells.
- → created computational models to predict the transcription factors that bind to core neural-differentiation enhancers, as well as those that bind enhancers of distinct neural lineages only.
- → studied the sets of transcription factors that bind to promoters and enhancers in the first three cell lineages that differentiate from ES cells.
- Sequences bound by transcription factors in one of the three lineages exhibited molecular modifications that promote gene expression, such as loss of DNA methylation.
- By contrast, the same DNA regions exhibited repressive modifications in the other two cell types.
- → that regulatory elements controlling genes that are essential for cellular identity are often also epigenetically modified in parental cells.

Major caveats

- These studies are based on analysis of cell populations, and therefore miss potentially crucial aspects of cellular variability within populations.
- When tissues are examined, enhancer landscapes represent the composite of the cell types that make up that tissue, not a pure cell population.
- Studies of different populations of white blood cells called macrophages suggest that the tissue environment can shape enhancer landscapes.
- Although the DNA sequences found in cell-specific enhancers provide clues to the identities of the transcription factors that regulate enhancer activation, functional roles must be validated experimentally.

Thank you for your attention.

